A THERMOTRANSFUSION MODEL FOR MIGRATION OF GOLD, BASED ON DATA FROM SECONDARY DISPERSION AUREOLES

SUMMARY

Studies on the behavior of gold in the region of Gorna Dikanya – Dren, Radomir district (lithochemical sampling of secondary dispersion aureoles) have shown that the quadratic mean of gold content in samples from a definite anomaly is constant. The nature of this phenomenon is explained by physical laws – decreasing content in areas of high temperature in porous media (Knudsen pump) and thermodiffusional enrichment due to existing temperature gradient.

A law for distribution of gold atoms in rocks has been defined in case of existence of a temperature gradient. Facts have been pointed out to confirm this law (constant quadratic mean of the gold content in individual anomalies, presence of local maximum in the center of the anomalies, break-up of the anomalies, linking of groups of anomalies into bands and rings).

The consequences of this law for the of metallogeny of gold and the analytical practice is discussed. It is recommended to perform a re-assessment of known gold deposits and occurrences in Bulgaria, gold surveys and the available data on gold content in rocks (clarks).

Authors: Oleg Vitov, Irina Marinova

Въведение

Изследваните верхи температурни на минералообразуване на някои златоподобни флуидните системи в България показват относително близка по еднаква спойност на относително на абсолютните минимални и максимални температури. (Кълкин и гр., табл. 1) Температурни интервал на опазване на златопо е много по-нисък от показвания в таблицата обща температурен интервал, а коанционалния на посевно залепените процеси (\(n = \Delta T/\Gamma \)) е еднакво малък и не може да обясни промяните на температурата на златопо.

От друга страна декларирани минимални (463°K) и максимални (663°K) температури на минералообразуване показват, че при минералогенеза на златопото температурата на флуидната система вяма решаващ рола.

Тези обстоятелства вдъхат до предположението, че златопото в скалите има поведение на благороден газ, извършваща трансфузия (Ердъвак, 1965, с. 20-25; с. 241-242) в съседната матрица на скалите под действие на температурните потенции.

Известен механизъм на трансфузия в тараканова обстановка е Келсъновата дифузия (разсейване на златопото в благороди до поява на източник, по Язовский и гр., 1971):

\[C_{Au} = \frac{A}{\sqrt{T}} \]

където \(C_{Au} \) - съдържание на злато; \(\Gamma \) - абсолютна (Келсънова) температура на средата; \(A \) - коэффicients по Кнудсен, зависящ от на пукаността на скалите, от размерите и наситеността на скалите с капилларни (пори) и от дефектите на кристалите.
При удар в стените на вороте зданий атоми се опразнават еластично и допираят за периметърното обсъждане на здат в близост до топлинния източник при наличие на две пласта частици с различна маса (по Ландау и др., 1969), т.е.

\[C_{\text{Lan}} = B \sqrt{\frac{k}{T}} \]

където \(B \) е коефициент на Ландау, забисищ от характера на удар на зданието и съклоните на здатната хапата.

Тъй като зданието не взаимодействува със съклоните на здатната хапа на здатната, здатната механизм се изразява в няколко равници на геометрията и движения на здатната части от здатната равнина

\[C_{\text{Lan}}^2 = A \cdot B = \text{const} \]

което е и физически обяснение на наблюдаваното постоянство на средното на квадратите на спонтанното в съотношенията на здат за отсечка лиофохимична аномалия (Витов, Маринова, 1998).

Характеристика за описания пермотрансфузионен механизъм на предразпределение на здатната атоми в здатните са формализирано на локален минимум в цензора на геометрията аномалии, съединение с източника на топлината и наличието на симетрия в разпределение на здатната.

В статията са представени следствията от дейността на пермотрансфузионния механизъм на разпределение на здатната в състояние и са посочени експериментални доказателства.

Изходни допълнителни

Приема се, че параметрите на средата не се изменят с изменението на температурата и, че при наличие на температурен градиент здатната се предразпределя по описанията два механизма, от което следва

\[C = (A + B) \sqrt{\frac{T}{T + 1}} \]

За изследване експериментално на геохимичното поле на здатната се приема, че предразпределението на температурата по квадратата на разстоянието до топлинния източник, умножен по коефициент на полипропионовата на средата мол една единица е константа, т.е.

\[T (kr^2 + 1) = T_0 \]

където \(T_0 \) е температурата на източника (следствие от условия за непрекъснатост на топлинния поток).

След нещо разгледаното се получава:

\[C = (A + B) \frac{\sqrt{T_0 (kr^2 + 1)}}{To + kr^2 + 1} \]

Това уравнение (фиг. 1) описва изменението на съотношенията на здат с определяване от топлинния източник. По този начин съотношенията придобиват максимална стойност

\[C_{\text{max}} = (A + B)/2 \]

на разстояние

\[r = \sqrt{kT_0^2 + 1} \]

от топлинния източник (от нулата на първа производна на съотношението по температурата на източника и разстояние).

Отбелязано към локалния минимум, всички съотношения на здат в проби от точки близки до края обаче се подчиняват на закономерността:

<table>
<thead>
<tr>
<th>Табла 1:</th>
<th>Термодинамични характеристики на някои здатноносни флуидни системи в България (Куйънк, Христов, Петрова, Георгиева, Тодоров, ГМР, 1996, 4, 49–60)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Наименование (флуидна система)</td>
<td>(t^0) (^\circ)С</td>
</tr>
<tr>
<td>Големи, Свици, Полета</td>
<td>290</td>
</tr>
<tr>
<td>Елена</td>
<td>250</td>
</tr>
<tr>
<td>Меланд</td>
<td>390</td>
</tr>
<tr>
<td>Полски градец</td>
<td>320</td>
</tr>
<tr>
<td>Добруджанец</td>
<td>290</td>
</tr>
<tr>
<td>Български, Западен</td>
<td>340</td>
</tr>
<tr>
<td>Мадарската, Чала</td>
<td>270</td>
</tr>
<tr>
<td>Плоско</td>
<td>260</td>
</tr>
<tr>
<td>Седлец</td>
<td>270</td>
</tr>
<tr>
<td>Резино</td>
<td>270</td>
</tr>
<tr>
<td>Пазарски руден поле</td>
<td>350</td>
</tr>
<tr>
<td>Средно</td>
<td>390</td>
</tr>
</tbody>
</table>
(A + B)\sqrt{To} = \frac{kr^2}{\sqrt{kr^2 + 1}} \frac{1}{C} \frac{1}{C_0} = const,

Където const включва данни за съдържаната матрица (напуканост, проницаемост, изменени върху минералите и минералните зерна, както и абсолютната температура на повърхността на златото изпочинч.). Съдържанието на злато на точката на опробване на разстояние r от повърхността на златото изпочинч.; Сh съдържанието на златото на точката на минимум; k е коефициент на температурното на срещата.

Криериите на съгласуваност (μ) на описания модел с данните може да бъде относятелна грешка на константата, изчислена по данни от близката околност на центъра на геохимичната аномалия, т.е.

\[\mu = \frac{\sigma}{x} < \delta \]

Където δ е доста̀тъчно малко число, x е средната аритметична стойност на съдържанията на злато, изчислена по данни от близката околност на центъра, σ е средно-така̀рно отклонение на изчисленаата средна аритметична стойност. В идеалния случай (точките изпочинч. на повърхност, върху изотопноста на срещата) μ е равен на нула.

От друга страна, една геохимична карта по μ ще покаже минимуми за групи от точки на опробване, принадлежжещи на една златна ано-

Фиг. 1. Изменение на морфологията на златните аномалии с изменение на параметрите на модела. Свойствата на златото (A) обуславят максималните стойности на съдържанията на злато, докато коефициентът на температурност (B) и температурата на изпочинч. (C) оказват влияние само върху формата на крива-та.
малъв. За целта е необходимо да се сканира цялата площ с избрани размер на пробата и да се дефинира геохимична карта в измерения на μ.

При съвършена геоложка обстановка (мозайка от различни по вид и свойства скали, непочкови и почвови елементи) на площта, раздели, изкуствени граници, дайки, възложени на близки в пространството инженерни агенти и възниква статистически държка между параметриите средно квадратично отклонение ($σ_c$) и средна аритметична стойност на разпределението на площадите (A, B и C) и за множеството от стойностите, получени с помощта на пробата (фиг. 2). При това съвържаването на злато в геохимичните проби се описва условно възстановяване е чрез модел

$$σ_c^2 - μ^2 + C_n = \frac{(ΣC_n)^2}{n} = σ_n^2 = \text{const},$$

където $σ_c^2$ - дисперсия на издишката; $μ^2$ - дисперсия от изкуствената анализа; C_n - квад- рат на средната аритметична стойност на площадите ($ΣC_n^2$); $σ_n^2$ - средна квадратична стойност на площадите; R_n = const - показател на геохимичната аномалия. Геохимичните аномалии с еднакви показатели описват еднako дъги от точки в графика $σ_n - C_n$ (фиг. 2) и са представени с едноцветни полета в съответна карта (фиг. 3).

Определен по тази начин, показателът на геохимичната аномалия е статисти-ка по показателя R_w (г/т; T^k)

<table>
<thead>
<tr>
<th></th>
<th>.01</th>
<th>.02</th>
<th>.03</th>
<th>.04</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>.01</td>
<td>.02</td>
<td>.03</td>
<td>.04</td>
</tr>
</tbody>
</table>

карта с изосърдания (г/т)

--- линии и точкови източници на топлина

Фиг. 2. Разпределение на средните аритметични стойности на площадите $σ_c$ в графика $σ_c^2 - μ^2 + C_n = \frac{(ΣC_n)^2}{n} = \text{const}$.

Фиг. 3. Фрагмент от съборна геохимична карта по показателя R_w и изсърдания на злато (Витов, Маринова, 1990). Аномалиите са групирани по здрави съседи със съседи, които показват за здраво упътване източници на топлина, предизвикани от различни елементи и геохимични системи.
Морфология на кривите на съпръждане на злато в профи ̀л профили

Като се има предвид, че различните склона са с различни коефициенти (A + B) и че повлиянето на разпределение е с означения от различни геоложки епоки, е извършено моделирание за всеки интервал на спадане (нарастване) на съпръждане на злато по профили (рис. 4.).

Минимумът (y2) в дефинирана интервал се приема за място (r=0) на топлини изопонична, докато максимумът (y2), намира се на разстояние r, посоката на съпръждане на дънене пластини в посредственото на златните апогоми. При първия допускане следва, че

\[(A + B) = 2y_2, \]

и точката с относителна координата \(C \) има съпръждане на злато (C)

\[C = \frac{2y_2 \sqrt{T_0(kr^2 + 1)}}{T_0 + kr^2 + 1}. \]

Получените модели криви (T0, = 560°K) са добро приближение до реализираните данни. Ако има незвънствености в модели на данните, може да се открие, че систематични грешки в операцията и в анализа на профилите (в случай A отклонение ще е без корекция; в случай В данни са максимални стойности с коенстати 1.32 на Бояд. Маричова, 1998).

Съществени в случаи са наличието на минимуми в средата на аномални, като и проследяването на посредственото на реализираните данни чрез хода на моделната крива.

Морфология на релефа по съпръждане на злато

При наличие на точкови и линейни изопони на топлини златото ще се преразпределя, а в релефа на нивата негово разпределение ще се формират тела с минимуми в центъра за първия случай и с гъвкав цветови, симетрични спрямо температурна ос, аномални - във втория. Осите на геохимичните аномали ще се съвържат успоредно на геоложките граници.

Изготвена гистограма на златото (рис. 5) е илюстрация на тези тенденции.

Обсъждане

Експериментите възлизат на злато са с относително малък дял в свояния златопробив (Пеков, 1988), но с изключването на съвремените и метаморфозирани разлики в златата, те ще станат основни източници на злато.

От друга страна, при наличието на 1500 променени златни находища и 350 класификационни схеми (Шер, 1972) е трудно да се посочат общовалидни критерии за възприемане или оценка на пресечейкия златни минерални образования.

Съществуващите загръждащи в мелантологията на претърсение на променен златен неравен са обяснени като се използват съвършени стъпки на златото. Златото има добра
Фиг. 5. Аномалична карта на златото в региона Боснек - Горна Дикана - Дрен, Ратмирско (Маринова, Витъб, 1998а). Създадени елементи на симетричност (аномалиите са с една върха), винаги с наблюдение на злато и пръстенообразно подражание на аномалии. Детайл от фигурата (правоъгълник) е представен на фиг. 3.
неорганична химия (Погдебет, 1982) и е трудно обяснен пропорционално му капо химично съединение (Ефимов, 1983) или комплекс (Крейтер, 1948б).

Извършени експерименти (Куликов, Кузьмин, 1988, с. 90) убеждават, че при температурата над 600°C заглажото се разчупва (след земестната фаза в металомафитите, Костов, 1973), като в интервала от 300 до 600°C показва тенденция да Микура и да се напряга в област с температурен градиент.

Указание за термично усъвършенстване на заглажото (микура на заглажото при наличие на термичен градиент) са термодинамометаморфично усъвършенстване на заглажото в района на Западен Урал и заглажото с усъвършенстване на ракитата (Крейгер, 1948б).

В тази посока трябва да се търси връзка и неизвестната технология за заглажото на прахите огневи методи за рудодобив и усъвършенстване на заглажото с последващо термодобиве и промяна на получението заглажено пясък.

От друга страна е описана само единични случаи на едновременен ракит в самородно заглажено с други минерали. Формите на ракитата на заглажото са изключително в самороден вид (кулчи, кристалите, прожилки) и като интермембрални сплани със сребро, злато (Атanasов ел. ат., 1988) в медур.

Тези съображения, както и изложените по-горе обстоятелства, потвърждават твърдения на механизма за преразпределение на заглажото в промятата с оглед изотопите на наобообразован крипипери за прегон и отклонение на промишлената ценост на заглажото появяване.

Използването на геохимична прогноза за пръв път се получава върху товара в област на Росенски Боровец - Горна Дунайска в района на Войвода (Матова, 1998) и стационарното моделиране на същите данни показва наличието на характеристичния показател на заглажени аномалии, изразяващ се в постоянството на съществено отваряне на квадратите на заглажото за отклонението въглова аномалия.

Доколкото средното от квадрата е сума от квадрата на средното аритметично съдържание и дисперсията на една извадка (Тонков, 1998), спиците до интензивната възможност да се оцени статистически разпределение колелото в изследвания обект (Янов, 1998). В съответствие с тази връзка между параметрите и фактите, че високите стойности за съдържание съответствуват и на високи стойности на дисперсията.

Оттук разграниченият процъфтано зараждане, че широка използваната в практиката оценка на количеството метала в геоложките тела чрез средно аритметичното съдържание е обречен на с „дефицита на маса“ пропорционален на големината на дисперсията. Този „дефицит на маса“ е най-изразен в нахлаждане с голема изменчивост на компонентите - злато, сребро, жълто.

Тълкуването на постоянството на средното от квадратите на стойностите като биометрическо за термометрифузионно преразпределение на заглажото навежда на мисълта, че заглажото образува промишлени натрупвания в скали с благородни метали (напълно карбонци) и наличие на определен градиент. Точният градиент при високи температури, от една страна, води до хидротермална геотемпература и минерализация с хидротермална природа, т.е. до напластвване на фазови процеси.

Заглажото не възможност химически със силовината матрицата на скалите и по този принцип поведението му се бие с поведение на ненаситна газа, което също не възможност химически със силовината матрицата. Така могат да се объяснят наклонения на геоложкообразни в залежните на заглажото и усъвършенстване на газове (въздух, горюващ бутилен) включения в самородно злато (Петровска и др., 1971).

С описания термометрифузионен механизъм може да се обясни и други според факта на кларковете на заглажото в базалните скали със високи от кларковете в кислите скали (Войвода и др., 1990), а промишлени заглажото на които се формират изключително във връзка с кисели скали. В случая базалните скали, като продукт на високотемпературна мащабна геотемпература, разсеяват заглажото и са относително изотопни като заглажено съдържание, в градината заглажото са формирани в контигенталните плочи, в област с високотемпературни градиенти и са обединени на заглажото (ефект на „Креативна вълна на пома“).

От друга страна, наличието на свързаните в земната кора (33/егерус) предполага, че мантията със хомогениране съдържания на заглажото, и контигентални (като по-стабилна област) се обесяват систематично със заглажни атоми.

Идеята за дифузия на заглажото в скалите е в разреждение, като съдържанието е експериментално скорост на дифузия (което с много макзви). Трябва да се има предвид обаче, че в случай процеса протича под действието на топлинния градиент, като се разгледава съдържанието на здраво и съдържаща поле на силн, предизвикващ миграция на атомите, като при дифузията имаме двойката разхода в съдържанията в различни токове (анализи са на двойката електрон в електрончи в електроните се двойки със скорост от 100km/sec, електроните се
ўвйыкі сьця скороспіта на свецьнітабы.

Термотрансфузійным механизму обясня-вае вызначанне предстаўленных на купелу-
вания пры лабораторным аналізу пробы в
раённе с групамі мётоў і ўзьвестня "на-
гіт" зьсю (наличне на самоаркып от зламу
віль вьвісціваць скалы, белны на зламу).

В результаты ад извяржэннях даследання
будо зламання в рэгіён Гарня Дыккая - Дрен,
(Radomir Marko (даны на літ-
электронны абзывк на баярную пеўны на
рэгіён) аб'юняліся на пэрыды разьвіцця
квадратичнае стыходна на сьвярдзання
на зламу в пробіла за адналь аномалії (Ви-
таб, Марыявіч, 1998).

Това явленне аб'юняліся с фізічным законы -
аб'юняліся на пэрыды разьвіцця на высоцкі температура
на праста сця (Камсекавіч ды фізі-
рэгіённы абзывк на пэрыды разьвіцця
на температура градынт.

Установленнае цыленне для разьвіцця на
якім арыўі яная на пэрыды разьвіцця
на температура градынт и са наблуданымі факты ў пат,
рэгіён на пэрыды разьвіцця на пэрыды разьвіцця в здыме іншага (наличне на локалі-
спыалу в цэнгера са літукалымі аномаліямі; разьвіцця на аномаліямі, абвію-
зывк на групы аномаліямі в івіцы и прыстэны).

Патрэбнае разьвіцця на матэматычны мо-
дэл с фізічным законы вогі ды прэпрыўтаба
(Марыявіч, 1998) ды бягне арэнарга прэ-
цыя на пэрыды разьвіцця на пэрыды разьвіцця
на градынт.

ЛІТРАТУРА

Атамыч К. Я. Бордзев, О. С. Витов, А. К. Атамыч 1988. Атамыч на
на пэрыды разьвіцця на праста сця.

Марыявіч К. С. Витов, 1990. Геохімічны здым на пэрыды разьвіцця
на пэрыды разьвіцця на здыме іншага (наличне на локалі-
спыалу в цэнгера са літукалымі аномаліямі; разьвіцця на аномаліямі, абвію-
зывк на групы аномаліямі в івіцы и прыстэны).

Патрэбнае разьвіцця на матэматычны мо-
дэл с фізічным законы вогі ды прэпрыўтаба
(Марыявіч, 1998) ды бягне арэнарга прэ-
цыя на пэрыды разьвіцця на пэрыды разьвіцця
на градынт.

ЛІТРАТУРА

Атамыч К. Я. Бордзев, О. С. Витов, А. К. Атамыч 1988. Атамыч на
на пэрыды разьвіцця на праста сця.

Марыявіч К. С. Витов, 1990. Геохімічны здым на пэрыды разьвіцця
на пэрыды разьвіцця на здыме іншага (наличне на локалі-
спыалу в цэнгера са літукалымі аномаліямі; разьвіцця на аномаліямі, абвію-
зывк на групы аномаліямі в івіцы и прыстэны).

Патрэбнае разьвіцця на матэматычны мо-
дэл с фізічным законы вогі ды прэпрыўтаба
(Марыявіч, 1998) ды бягне арэнарга прэ-
цыя на пэрыды разьвіцця на пэрыды разьвіцця
на градынт.

ЛІТРАТУРА

Атамыч К. Я. Бордзев, О. С. Витов, А. К. Атамыч 1988. Атамыч на
на пэрыды разьвіцця на праста сця.

Марыявіч К. С. Витов, 1990. Геохімічны здым на пэрыды разьвіцця
на пэрыды разьвіцця на здыме іншага (наличне на локалі-
спыалу в цэнгера са літукалымі аномаліямі; разьвіцця на аномаліямі, абвію-
зывк на групы аномаліямі в івіцы и прыстэны).

Патрэбнае разьвіцця на матэматычны мо-
дэл с фізічным законы вогі ды прэпрыўтаба
(Марыявіч, 1998) ды бягне арэнарга прэ-
цыя на пэрыды разьвіцця на пэрыды разьвіцця
на градынт.

ЛІТРАТУРА

Атамыч К. Я. Бордзев, О. С. Витов, А. К. Атамыч 1988. Атамыч на
на пэрыды разьвіцця на праста сця.

Марыявіч К. С. Витов, 1990. Геохімічны здым на пэрыды разьвіцця
на пэрыды разьвіцця на здыме іншага (наличне на локалі-
спыалу в цэнгера са літукалымі аномаліямі; разьвіцця на аномаліямі, абвію-
зывк на групы аномаліямі в івіцы и прыстэны).

Патрэбнае разьвіцця на матэматычны мо-
дэл с фізічным законы вогі ды прэпрыўтаба
(Марыявіч, 1998) ды бягне арэнарга прэ-
цыя на пэрыды разьвіцця на пэрыды разьвіцця
на градынт.